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This paper reports the development and testing of machine vision systems for sorting apples for surface
defects, including bruises. The system operated on apples, which were oriented with the stem/calyx axis
perpendicular to the imaging camera. Grey-scale images in the visible wavebands were used to verify
orientation. Images for detection of defects were acquired through two optical filters at 740 and 950 nm,
respectively. Defects were detected using a combination of three different threshold segmentation routines and
one routine based on artificial neural networks and principal components. The paper reports quantitative
measurement of the performance of the system for verification of orientation and a combination of the four
segmentation routines. The routines were evaluated using eight different apple varieties. The ability of the
routines to find individual defects and measure the area ranged from 77 to 91% for the number of defects
detected, and from 78 to 92-7% of the total defective area.
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1. Introduction

Surface defects are of great concern to producers of
apples, as the perceived quality is highly related to the
appearance of the fruit. Sorting apples for surface defect
is mainly done manually, even though sorting equip-
ment has been developed and is commercially available.
However, many producers, especially in the USA, feel
that the existing machinery is not sufficiently selective,
especially on darker coloured varieties like Red
Delicious.

The system reported here was built at the USDA
Appalachian Fruit Research Station, Kearneysville,
West Virginia, in close collaboration with Cornell
University. The development of the sorter started in
1980, reaching its present configuration as described by
Throop et al. (1999, 2003a). The design of the sorter
distinguished itself by incorporating an orienting sys-
tem, which aimed at orienting the apples with the
stem—calyx axis perpendicular to the image-capturing
camera and hence out of sight of the camera. This design
eliminates the need for distinguishing between defects
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and stem/calyx, which is a critical part of the develop-
ment of automatic apple sorters. Several researchers
have tried to address this problem with varying success,
e.g. Crowe and Delwiche (1996) and Leemans et al.
(2000) which achieved error rates between 9 and 33%.

The sorting system, which is intended as a prototype
for testing and developing the concept, consists of a
conveyor in which the apples are transported in
individual cups. There is a small wheel at the bottom
of the cup, which turns the apples until the cavity at the
stem or calyx is over the wheel and it thus looses contact
with the apple surface. This will leave the apple with the
stem/calyx axis vertical (Throop et al., 2003b). After the
orienting section, the apples enter the image acquisition
area. This consists of a lighting system and a camera.
When passing this area, the apples are tilted by 45°. This
makes them rest against rollers, which turn the apples
through one turn as the apples travel the length of the
area, which is about 50 cm.

Experiments with the orienting system showed that
orientation was successful for more than 95% of the
apples, depending on variety (Throop et al., 2003b).

Published by Elsevier Ltd on behalf of Silsoe Research Institute
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With up to 5% of the apples incorrectly oriented there
was a risk that these would be wrongly classified as
defective and hence lost. Bennedsen et al. (2004)
described the development and initial testing of the
orientation verification system. In a simulated test with
images of apples acquired under laboratory conditions
and images classified by unsupervised feature extraction,
correct identification of non-oriented apples occurred in
about 97% of the cases.

With the system in its current configuration, detecting
defects in the stem/calyx area is not possible. However,
according to the concept as described by Throop et al.
(2000), orienting the apples allows for the use of
additional cameras, attuned to inspect the stem and
calyx region. Hence, with more cameras, three sets of
images could be acquired for each apple: one covering
the stem region, another the calyx region, and a number
of images covering the circumference as the apple
rotates in front of the camera. Additional research and
development is needed in order to add stem and calyx
inspection to the system.

The image-capturing system was based on research by
Throop and Aneshansley (1997). They investigated the
performance of different wavelengths for detecting
surface defects, and found that 540 nm produced the
best segmentation of defects caused by the blister spot,
early frost damage, powdery mildew, russet and
sunburn. Seven hundred and fifty nano meters per-
formed best for bitter pit, Botryosphaeria rot, chemical
damage, Codling moth, corking, cracking, fly speck, hail
damage, leaf roller, rot, scab and sooty blotch. The
optimal wavelength for detecting bruises, punctures, and
scald was 950 nm. Aneshansley et al. (2003) developed
an optical filter system with a splitter and two band pass
filters. The optics in the splitter divided the incoming
radiation into three identical parts, each directed to a
sub-area on the image sensor, thus enabling the camera
to capture three images simultaneously.

Segmentation routines were developed for identifying
defects in the near-infrared (NIR) images, captured by
the imaging system. Two approaches were followed: one
was based on artificial neural networks, and the other
used a combination of thresholding methods.

The current paper presents the final testing of the
combined system of orientation verification and image-
processing routines on eight different apple varieties.

1.1. Objectives

The objectives of this research were to test a
previously developed system for verification of the
orienting mechanism, and to test the combined perfor-
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mance of four segmentation routines for surface defect
detection, using different apple varieties.

The tests were limited to qualitative assessment of the
performance of the systems. No attempts were made to
address or optimise the performance as far as speed was
concerned.

2. Materials and methods

2.1. Verification of orientation

In order to avoid problems with apples, not oriented
by the orienting system, an additional vision system was
designed, with the objective of verifying the orientation.
This system comprised a second camera, mounted over
the conveyor, at the end of the orienting section, just
before the apples entered the tunnel where the image
acquisition took place. In this position, the camera was
optimally positioned to identify oriented/non-oriented
apples. Images of oriented apples, acquired by this
camera, will have the apple stem/calyx centred in the
image, which facilitates identification. Hence, the pre-
sence of a stem/calyx in the centre of the image would
mean that the apple was correctly oriented, and could
proceed to defect detection. Absence of stem/calyx
means that the apple should be recycled to the orienting
system.

Images were processed and classified by a method
referred to as unsupervised feature extraction. This
image-processing method (Bennedsen, 2001) uses the
entire image, without any attempt to identify individual
features. The method represents an attempt to mimic the
way in which humans evaluate and classify objects. The
idea is to base the classification on an overall impression
of the image as opposed to classical image processing
which normally involves identification of the objects by
segmentation, followed by the assessment of features
like size, shape, number, colour, position, efc. In
unsupervised feature extraction, no attempts are made
to identify features or their value. Groups of images
representing different classes are gathered in a matrix,
where individual images can be perceived as samples
with their pixel values being variables. Subsequently,
principal component analysis (Esbernsen et al., 1994)
can subject this data matrix to data reduction, and the
most significant principal components can be used to
train a neural network to perform classification.
Unsupervised feature extraction is particularly well
suited for situations where a classification is difficult to
describe by a number of features and their values.
Further, the method can be implemented in such a way
that the user can update it without modifying software,
simply by providing the system with a number of
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examples of the different classes, which is then used to
train the neural network.

All image processing, principal component analysis,
and data processing were done using Matlab version
6-5-1 with image processing and neural network
toolboxes (The Math Works, Inc. Natick, MA, USA).

Initial tests of the concept (Bennedsen et al., 2004)
indicated that verification of orienting in this way was
indeed possible. Tests under more realistic conditions
were carried out using a charge-coupled device (CCD)
camera (Sony DFW-X700, Sony Corporation, Tokyo,
Japan) mounted over the conveyor, at the end of the
orientation section. Two sets of images were acquired:
one set of Red Delicious apples, and the other of Golden
Delicious. During the test, apples were manually put
into the cups of the conveyor at the end of the sorting
section in order to obtain a high amount of non-oriented
apples. Images of the apples were sorted in groups
representing oriented and non-oriented apples. The
most obvious examples were used for training the neural
networks, while the rest were reserved for test sets. The
number of images in the different classes is provided in
Table 1.

Prior to performing unsupervised feature extraction,
an area around the centre of the image was extracted in
order to eliminate the background. Further, equalisa-
tion was performed, followed by filtering (Fig. 1). The

Table 1
Number of images used for training and tests sets, respectively
Variety Class Apples Training  Test
images set set
Red Delicious Non- 111 80 31
oriented
Oriented 401 320 81
Total 512 400 112
Golden Non- 146 116 30
Delicious oriented
Oriented 365 319 46
Total 511 435 76
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filter was based on a contrast-enhancing filter; it
consisted of a 5 by 5 matrix and would enhance the
contrast and reduce small variations in grey level.

The images were then reduced to 20 by 20 pixels,
vectorised and combined to form a matrix, from which
principal components were derived. Based on the
number of principal components, neural networks were
constructed and trained, using principal components
from the training sets. Based on previous experiences
with this type of classification, among others (Benned-
sen, 2001), three-layer networks were used. The first
layer, or input layer, was designed with the number of
neurons matching the number of principal components.
The second layer, or hidden layer, was the size of, or
slightly more than half the size of, the first layer. The
output, and final layer, consisted of one neuron.
Transfer functions were sigmoid for the two first layers
and linear for the output layer. Training was done using
back propagation with a Fletcher—Reeves update con-
jugate gradient algorithm. After training, the perfor-
mance of the networks was assessed using principal
components derived from the test sets.

2.2. Surface defect identification

The imaging system on the prototype apple sorter
(Throop et al., 1999, 2003a) consisted of a camera
(Dalsa 1M60, Waterloo, Ontario, Canada) with high
spatial resolution (1024 by 1024 pixels) at high data
transfer speeds (40 MHz).

Mounted in front of the camera was an optical splitter
that enabled the camera to capture up to three images
simultaneously. Band-pass filters in front of the splitter
limited the images to consist of selected wavelengths.
Based on previous research (Throop et al., 1999), two of
the three images were used with filters at 740 and
950 nm, respectively.

While passing the camera, apples were rotated
through 360° while the camera acquired six consecutive
images. Depending on the system settings and the size of
the apple, the frame would show most of the apple

Fig. 1. Image pre-processing. left, original image; centre, stretched and filtered image; right, image reduced to 20 by 20 pixels
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Fig. 2. Original images acquired with the two-waveband filters; top six images are captured through a 740 nm filter, the six images in
the lower row through a 950 nm filter

Table 2
Apple varieties used in the test and the dates for picking and testing

Variety Picked Date run Time stored
Gala End of August 04-02-2004 7 months
Empire Mid September 13-01-2004 4 months
Jonagold Mid September 01-04-2004 6-5 months
Golden Delicious Mid to late September 08-01-2004 3-5 months
Pink Lady Mid to late September 07-01-2004 3-5 months
Red Delicious Mid to late September 04-02-2004 4.5 months
Fuji Mid October 04-03-2004 4-5 months
Rome Mid to late October 30-10-2003 >1 month

surface facing the camera. An example of images is
shown in Fig. 2. The upper six sub-images in Fig. 2 were
captured through the 740 nm filter, the lower six images
were captured through the 950 nm filter. Typical image
frame size was 138 pixels high, in the stem—calyx axis,
and 150 pixels wide, corresponding to six frames
totalling 138 by 900 pixels per apple image. The frame
size was decided during image acquisition and depended
on the size of the apples. For practical implementation,
only 60° of each apple frame was needed. Specially
designed software extracted 60° from the centre of each
frame and combined the resulting six frames to an image
representing 360°, or the entire surface of the apple. This
reduced the final size of an image to 138 by between 350
and 400 pixels, depending on the size of the apple.

The two parts of Fig. 2 show how the dark spots from
various diseases are more evident in the 740 nm range,
while the bruises appear darker at 950 nm. The task for
the image-processing software was to identify the
defects, while not including darker areas from shadows,
stem and calyx or the rim of the fruit. Four segmenta-
tion methods were implemented to identify the defects.
These consisted of three routines based on threshold
segmentation, and one based on principal components
and neural networks.

2.2.1. Apple test sets

Apples of eight varieties were used to test the
combined performance of the segmentation routines:
Gala, Empire, Jonagold, Golden Delicious, Pink Lady,
Red Delicious, Fuji and Rome. With the exception of
the Fuji, which was obtained from a commercial grower
and packaging enterprise, apples were picked at the
Appalachian Fruit Research Station, West Virginia, in
the autumn of 2003. Specimens with different surface
defects were preferred. Between picking and testing,
apples were stored at 0°C (Table 2). The day before
running the apples through the sorting system, bruises
were inflicted on most of the apples. This was done by
dropping apples 150-200 mm onto the convex surface of
a semi-sphere of wood. This created a bruise of about
12-15 mm diameter.

Three classes of defects were identified based on visual
inspection of the images: dark marks, bruises and faint
marks. Dark marks were generally caused by fungi or
bacterial diseases, hail damage or similar, and would
normally show up in the 740 nm images. Faint marks
were minor defects, which would not cause any down-
grading of the apple. The main reason for including
faint marks was to avoid counting them as false
positives, in case the routines detected them. False
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positives are non-defective areas segmented as defective.
For each variety, a set of test images was created. It
consisted of a total of 200 defects representing all three
classes. After selecting the images, the defects were
marked. This process was partly manual, and involved
marking the defective areas by using the mouse cursor.
A routine was developed which calculated the position
and the size of each defect based on the marking.

2.2.2. Thresholding segmentation

Three different threshold segmentation methods
previously developed and tested on Golden Delicious
apples were used in this study. They are referred to as
simple thresholding, multi-thresholding and intelligent
segmentation.

The simple thresholding segmentation was based on
routines developed by Throop et al. (2003a). Prior to the
segmentation, a flat field correction was applied to the
images. Flat field correction compensates for the uneven
distribution of light, caused by the spherical shape of the
apples. In this case, an image of a white sphere, the size
of the apples, was inverted and added to the original
apple image. However, the flat field correction did not
completely eliminate the background and left dark edges
around the perimeter of the apples. These edges would
be perceived as defects by segmentation using simple
thresholding with a single user-selected threshold level.
When the threshold was set for a reliable segmentation
of the defects, the routine would get the edges as well.
Figure 3 shows an example of a flat field-corrected
950 nm image and the result of segmentation.

In order to prevent the dark background and edges
from being identified as defective material, the dark
background was removed using a specially designed
routine. First, the images were converted into binary
images (black and white only). This was done using
Matlab’s automatic thresholding function, which deter-
mines the threshold value based on a histogram of the
grey values in the image. The thresholded image showed
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the position of the apple in the image as a white area on
a black background. This black and white image was
used as a template to remove the background in the
original image. Next, the columns were resized to a
standard size of 100 pixels, thus stretching it to fill the
entire frame. The coordinates of the border of the apple
were recorded so that the results of the segmentation
could be resized back to the original size and shape of
the apples, and hence allow comparison of the area
identified as defective by the segmentation with the
actual defects marked on the test set.

The next step was to reduce each of the six frames to
60°. This was done by calculating the perimeter of the
apple in the original images. Based on this, a portion
representing 60° was extracted from the centre of each of
the six frames. Combining these sections yielded an
image like the one presented in Fig. 4, representing 360°,
or the entire surface of the apple. After the extraction of
60° segments, a final trimming of the upper and lower
rim of the apple was applied, in order to remove any
shadows left by the background removal.

The actual segmentation was done by using Matlab’s
automatic threshold level function, which would select a
level based on a histogram of the grey levels in the
image. In case there were no defects in the image, the
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Fig. 4. Images after removal of the background, stretching to

a standard frame size of 100 pixels, and extracting six times

60° from the original six frames: top, 740 nm image; bottom,
950 nm image

Fig. 3. Top, 950 nm image after flat field correction using a white sphere; bottom, the same image after threshold segmentation



424

automatic threshold level function would select a level
that made local darker areas on the apple surface appear
as defects. In order to avoid this, a bar 5 pixels tall was
added to the top and bottom of each image. The grey
level of this bar was adjusted to appropriate values for
different apple varieties and differed for the 740 and
950 nm images. Thus, in the absence of defects, the bar
would dictate the threshold level identifying the bar as a
defect, instead of local, dark areas. After thresholding,
the resulting binary images were resized to their original
configuration using the arrays containing the saved
coordinate values. Finally, the ‘noise’ was removed by
median filtering, in addition to three erosions followed
by two dilations. The final result is shown in Fig. 5.

A simple thresholding is not always able to distin-
guish between defects and darker areas caused by
shadows. Further, in many cases a simple thresholding
will not identify all of the defective area, due to
variations in the grey level within the defective area.
The left frame of Fig. 3 provides a good example. The
automatic thresholding routine referred to as ‘multi-
thresholding’” was constructed in order to eliminate these
problems. The idea was to construct a binary image that
only identified the dark areas representative of defects
and not those areas representing shadows. Even though
this image would not show the whole area of each
defect, it could be used to mark the position of the
defects in the original image. With the position of the
defects identified, a simple thresholding routine, e.g. a
gradient segmentation could be employed to determine
the area of these defects. In this case, a Matlab library
routine was used.

The routine operated on one frame at a time. It
located the pixel with the lowest value and used this as a
threshold level for the creation of a binary image where
the dark areas received the value ‘one’ and the lighter
areas the value ‘zero’. Then the threshold value was

Fig. 5. Segmented images: top, 740 nm image; bottom, 950 nm
image
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increased by a user-defined amount and the original
image segmented again. The resulting binary image was
then added to the first segmented image. This process
was repeated until the threshold value reached the
maximum pixel value in the original image. The so-
called multi-layer image, which was constructed as the
sum of the segmented, binary images as described, was a
grey-level image in which the areas with the highest pixel
values represented the darkest areas in the original
image. This image was a combination of a number of
layers, corresponding to the number of binary images
used to construct it, which in turn equalled the number
of times the original image was thresholded.

The multi-layer image was then subjected to segmen-
tation in which the threshold was defined as the
maximum value in the multi-layer images minus a
user-defined amount. This segmentation aimed at
identifying the darkest areas in the original image and
the resulting, binary image was referred to as a marker
image. The final step consisted in constructing a binary
image, based on the marker image and the multi-layer
image. With the position of the defects identified, a
simple thresholding routine, e.g. a gradient segmenta-
tion could be employed to determine the area of these
defects. In this case, a routine from the Matlab image-
processing toolbox was used. The principle is illustrated
in Fig. 6. On the upper part of the figure, the curve
represents pixel values in a line through the multi-layer
image. After thresholding and reconstruction, the lower
part of Fig. 6 was created, representing the total area of
the defect, but eliminating the shadow area.

This routine referred to as ‘intelligent segmentation’
was developed as an attempt to improve the perfor-
mance of bruise identification in the 950 nm image. The
routine used the images directly from the camera, with
no flat field correction. Instead, a correction image was
constructed through a series of median filtering and
averages of the six frames of an image. The routine was
applied to each individual frame, but relied on all six
frames in an image to create the correction image. The
routine took the image through a number of steps to the
final segmentation, as explained below. First, each
image was broken down into its individual six frames
(image 1 in Fig. 7). Vertical bars, set at a grey level of 70,
were added to each side in order to influence the
automatic thresholding, similar to the simple segmenta-
tion routine. The frames were then filtered with a 10 by
10 median filter (result in image 2 in Fig. 7), and the
result segmented using Matlab’s automatic thresholding
function (image 3 in Fig. 7).

The filtered image (image 2 in Fig. 7) was trimmed
down to the size specified by the black and white
template (image 3 in Fig. 7) and stretched to fit the frame
size, yielding image 4 in Fig. 7. This image in turn was
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Fig. 6. Graphical representation of the multi-segmentation: in

the upper diagram, the curve represents the pixel values in a line

through the multi-layer image, constructed based on multiple

segmentations of the original image; this image is thresholded,

yielding a so-called marker image, which in turn is used to

construct the binary image in the lower part, representing the
defect, but eliminating the shadow

segmented using Matlab’s automatic function (image 5
in Fig. 7).

The results of the trimming and stretching (image 4 in
Fig. 7) for all six frames of the image were added
together and divided by 6 in order to construct an
average of the six frames (image 6 in Fig. 7). In order to
ensure that edge defects were not ecliminated in the
individual frames when the dark edges were removed, an
average was made, for each individual frame, of the
second segmentation (image 5 in Fig. 7) with the average
of all segmented frames (image 7 in Fig. 7). This new
template was used to further trim the individual frames.
The six frames, created as results of this trimming, were
then averaged and median filtered with a 5 by 5 matrix
(image 8 in Fig. 7). This image was then inversed in
order to create the correcting image which would be
added to each frame (image 9 in Fig. 7, a visualisation is
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provided in image 10 by multiplying by 2). The image
showed low values corresponding to the highlights in the
images to be corrected, but higher values where shadows
needed to be lightened.

When the correction image (image 9 in Fig. 7)
was added to a frame, a uniformly illuminated image
was obtained as seen in image 11 in Fig. 7. When this
image was segmented using the automatic thresholding
routine, it yielded the result seen in image 12 in Fig. 7.
This result for each frame was then resized according to
the coordinates saved by an array as it progressed
through the trimming functions, and then reduced to 60°
of apple surface. In addition, the black and white
colours were reversed, the white representing defective
material. The final step consisted in stitching the six
frames together to show the full apple: the result is
shown in Fig. 8§ with the original image inserted for
comparison.

2.2.3. Neural network defect identification

Neural network identification of defects was based
on principal component analysis (PCA) and neural
networks in the same way as described for the
verification of orientation. The images were perceived
as data sets, in which each individual column
was considered a sample, and the pixel values as
variables. These data sets were then subjected to
PCA in order to reduce the number of variables. By
using PCA, the columns of pixels are substituted
by a column of principal components (PCs). The
advantage of this method is that the number of PCs
was considerably lower than the number of pixels,
and that the PCs provided an optimised basis
for classification. Each column was assigned a
value of ‘zero’ if it did not represent a defect, and
‘one’ if it did represent a defect. The new matrix,
consisting of columns of PCs, and a corres-
ponding target vector of ‘zeros’ and ‘ones’ were used
to train the neural networks. As described for the
orientation verification, three-layer networks were
used. The first layer, or input layer, had a number
of neurons matching the number of principal compo-
nents. The second layer, or hidden layer, contained
slightly more than half the size of the first layer.
The output, and final layer, consisted of one neuron.
Transfer functions were sigmoid for the two first layers
and linear for the output layer. Training was done
using back propagation with a Fletcher—Reeves update
conjugate gradient algorithm.

Due to the difference in the detecting ability of the
two wavebands used, two training sets were constructed
for each variety: one for 740 nm images, and one for
950 nm. Images for the training sets were chosen by the
presence of clear and typical defects. After selecting the



426

B.S. BENNEDSEN; D.L. PETERSON

1 |

o
m

]
]

9
12

Fig. 7. ‘Intelligent segmentation’: 1, original first frame; 2, influencing bars added and filtered; 3, result of segmentation; 4, filtered

image after trimming and stretching; 5 same image after segmentation; 6, average of six filtered and trimmed images; 7, average the

same six images after segmentation; 8, median filtered average of six trimmed frames; 9, inverse of 8; 10, visualisation of 9 by
multiplying by 2, 11, individual frame after application of the correction image (9 Fig. 6); 12; Same image after segmentation

Fig. 8. Result of the ‘intelligent segmentation’ (top) and
original image (bottom)

images, the defects were marked as mentioned for the
test sets. Based on the manual marking, a routine
performed the image processing which created a target
vector of ‘zeros’ and ‘ones’, depending on whether the
area was marked as defective or not. The neural
networks at 740 nm were marked and trained to detect
primarily dark spots from various diseases, while the

neural networks based on 950nm images were con-
structed and trained in a similar way to detect the
bruises. The routine also allowed certain areas of the
training image to be ecliminated, such as artefacts,
shadows, and stem or calyx, which may confuse the
neural network and impede training. The routine then
created a new image without the unwanted areas. The
resulting training set images and their corresponding
target vectors were merged to form an image containing
12 to13 apple images and consisted of between 5000 and
6000 samples (columns of pixels) of which about
30-40% represented defects, and the rest non-defective
surface.

After training, the networks were tested using the test
sets containing apple images, new to the system.
Principal components were derived using the eigenvec-
tors generated in connection with the training set. An
example of the output of a network is shown in Fig. 9,
with the original image inserted above the graph.

Different versions of the neural network approaches
were tested. These included organising the images such
that the pixel columns were vertical, i.e. parallel to the
stem—calyx axis, and horizontal, i.e. perpendicular to the
stem—calyx axis, and combining the two. These tests
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Fig. 9. Example of neural network detection of defects, the image containing six sub-frames is lined up with a plot of the network test
output, the network assigned the value zero to columns not found to include a defect, and one to columns including a defect

showed that the best results were obtained with samples
parallel to the stem—calyx axis.

2.2.4. Combined defect identification

During the development and testing of the segmenta-
tion routines, it was found that their performance
depended on the type of defects and the image (740 or
950 nm). Tests using Golden Delicious apples showed
that multi-thresholding based on the 740 nm images was
most efficient for detection of large and small dark
marks. The faint dark marks were best detected using
simple thresholding with the 740 nm images and multi-
thresholding with the 950 nm images. Intelligent seg-
mentation proved to be the best way of detecting bruises
in the 950 nm images. Dark marks and bruises at the
edge of the apples could best be detected using multi-
thresholding with the 950 nm images for edge bruises
and 740nm for dark marks. The different routines
would normally not indicate false positives at the same
positions. This means that by combining the results of
the routines, one could confirm the defects identified by
another, while eliminating false positives.

A number of different ways of combining the output
of the four segmentation methods were considered.
However, in the end it was realised that a simple ‘voting’
by the routines was adequate. The way in which it was
done was by adding the four resulting images, and then
dividing the result by 2. In this way, if two or more
routines identified a defect, it was accepted. If only one
routine suggested a defect, it would be discarded. As the
defects were marked by white, or 255 on a grey scale,
two or more routines agreeing on the presence of a
defect would yield a final value of 255 when the result
was converted to 8-bit integer. If only one routine
indicated the presence of a defect, the value would be
127-5, which was converted to zero.

3. Results and discussion
3.1. Orientation

For the Red Delicious images, nine principal compo-
nents were derived, for an accuracy of 0-02. This means
that the ninth principal component is the last which
contributes more than 2% to the classification. A neural
network was constructed, consisting of nine input
neurons, five neurons in the hidden layer and one
output neuron. Trained with the training set, and using
back propagation and the Fletcher—Reeves update
conjugate gradient algorithm, the network reached
minimum gradient in 1001 training epochs, yielding a
mean square error of 1-311 x 107>, (The set target was
1 x 107" for mean square error).

For the golden Delicious images, 13 principal
components were derived, for an accuracy of 0-02. The
neural network consisted of 13 input neurons, seven
neurons in the hidden layer and one output neuron.
Trained with the training set, and using back propaga-
tion and the Fletcher—Reeves update conjugate gradient
algorithm, the network converged to the set goal of
1 x 107> for mean square error in 527 training epochs.

Results of testing the neural networks on the test sets
(Table 1) are shown in Tables 3 and 4. In a practical
implementation, the oriented apples, which are mis-
classified as non-oriented, do not represent a problem in
relation to defect detection since these apples would be
recycled to the orienting system. This would however
reduce the capacity of the system. Problems occur when
non-oriented apples are not identified. For these apples,
stem or calyx may be perceived as defects by the defect-
sorting system, and the apples will be rejected. The tests
indicate that this happens in 3% of the cases for Golden
Delicious (Table 4) and in 16% of the cases for Red
Delicious (Table 3). In order to evaluate the significance
of these numbers, it should be taken into consideration
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Table 3
Results of classifying test set of Red Delicious images
Classification Error, %
Class Non-oriented Oriented
Non-oriented 26 5 16
Oriented 10 71 12

Table 4
Results of classifying test set of Golden Delicious images
Classification Error, %
Class Non-oriented Oriented
Non-oriented 29 1 3
Oriented 8 38 17

that test sets consisted of images which did not show a
clear stem or calyx in the centre of the images, or the
absence for the non-oriented apples; instead, the test set
consisted of images where there could be some doubt as
to whether or not the apple was actually oriented. For
the Red Delicious in particular, their somewhat
irregular shape made it even more difficult to determine
if the apples were in fact oriented. Indeed, a closer
inspection of the five images apparently wrongly
classified as oriented revealed that only one image was
definitely not oriented, and that the rest of the apples
had the stem—calyx axis angled in relation to the vertical,
probably still passing the defect sorter in a correct
attitude. This brings the error down to 3%.

In a practical application of the orienting system, a
maximum of 5% of the apples will not be oriented. With
an error rate corresponding to 3 to 4% of those not
identified by the system, the potential loss becomes
0-15-0-2% of all the apples passing the sorter. This
number is slightly higher than the one found during the
laboratory testing of the concept. In this case, an overall
error of 0-05% was indicated (Bennedsen & Peterson,
2004) however, this test used a larger training set and the
images were reduced to 24 by 24 pixels as opposed to 20
by 20 pixels in this study.

3.2. Defect detection

The results of processing the images acquired through
the 740 and the 950 nm filters individually are shown in
Figs 10-13. The data are presented in tables in the
appendix. Dark marks are easier to detect in the 740 nm
images and some of them do not appear in the 950 nm
images. Bruises will normally be shown in both images,

B.S. BENNEDSEN; D.L. PETERSON

120

100

NANNN
NN

80 -

60 -

NN

40 Z

Defects detected. %

20 - i , 7
oL il

Gala EmpireJonagoldGolden Pink Red Del  Fuji
Del Lady

AN NN NN

T

Rome

Fig. 10. Results of defect detection using the 740 nm filter: B,
dark marks; B, bruises; =, faint marks; W, false positives

120

g

Defects detected. %
3

v - -] i : I:
Gaa EmpireJonagoldGolden Pink Red Del Fi
Del Lady

uji  Rome

Fig. 11. Results of defect detection using the 950 nm filter: W,
dark marks; B, bruises; =, faint marks; W, false positives

(o]
o

2 N W b O oo N ®
OO O O OO O oo
I 1 s L | ! |

Defective area detected. %

B 7 :
Gala EmpireJonagoldGolden Pink Red Del Fuji
Del Lady

Rome

Fig. 12. Results of defect detection using the 740 nm filter. Area
of defects: B, dark marks; &, bruises; [0, faint marks;, W, false
positives

however, with considerably more contrast in the 950 nm
images. The figures show number and area of defects
detected for each class, and the number of false
positives. False positives are the number of pixels
misclassified as defects, in per cent of the total number
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of pixels in the image. A defect was considered detected
if 10% of its area was identified by the combined
segmentation procedure.

The Fuji apples were provided by a commercial
grower who sorted the apples before supplying them.
Hence, only very few dark marks were found on this
variety, and none of them showed up in the 950 nm
images. Further the Fuji apples were waxed, which may
have impeded the detection.

In order to evaluate the overall performance of the
system, a combination was made of the resulting, binary
images from the combined segmentations of the 740 and
950nm images. Similarly, a test set was made by
combining the 740 and 950nm images in which the
defects were marked. During the merging of the test sets,
care was taken to ensure that redundant markings were
removed and that the size of the defects were chosen
according to the best representation, i.e. 740 nm images
for dark marks and 950nm images for bruises. The
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combined result of the segmentation was then compared
with the combined test set. The results for the number of
defects and area are presented in Fig. /4. The faint
marks were left out of both the total number of defects
and the number of detected defects. The rationale
behind this was that faint marks were not considered
the cause for declassification of the apples; however,
when detected they should not count as false positives.

In a practical implementation, the settings for the
thresholding routines will have to be adjusted for the
different varieties. Further, it should be considered to
train a neural network for each variety. Tests showed
that neural networks, trained on e.g. Golden Delicious
will perform reasonably on e.g. Rome and Pink Lady
apples; however better results were obtained with
networks trained for the actual variety. It will be
necessary to make allowance for the false positives. An
average level of 2% was obtained, but given the
differences between varieties, it will be better to use
individual values. This means that only apples with
more than a threshold number of pixels, identified as
defective, should be considered as possessing surface
defects. With a 2% level of false positives in a 138 by 375
pixels image, this amounts to 1035 pixels. Further
allowance will have to be made for the faint marks in
whether or not these are to be included as defects. This
will depend on the actual quality criteria.

4. Conclusion

A system for identifying surface defects on apples was
established and tested using eight different varieties of
apples. The orientation-verification system successfully
identified non-oriented apples with an error rate for
practical implementation of 0-15-0-2%. The defect
detection system identified between 77 and 91-6% of
the defects, with 1.1-3-6% false positives. Combined
area of defects identified ranged from 78 to 92-7%. The
industry will ask for 100% detection with no false
positives. However, this is not obtained with the current,
manual sorting albeit the level of detection is not
known. Whether or not the performance of the system is
adequate depends on existing quality criteria.
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Appendix AResults of the defection for the eight different
apple varieties (Tables A1-AS).

Table A1
Combined results of defect detection based the combination of
740 and 950 nm images

Variety Defect detection, % False positives, %
Number Area Faint marks

Gala 77 82 10 1-1

Empire 86-:25 927 55 1-54

Jonagold 91 85 22 2

Golden Del.  88-5 855 17-6 2

Pink Lady 90 85 10-4 1-84

Red Del. 87 88 40 1.5

Fuji 90 78 12 3.07

Rome 91-6 86-1 19 3-6
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Table A2
Results of defect detection based on 740 nm images. Number of
defects identified

Variety Defect detection, % False
positives, %
Dark Bruises Faint
marks marks
Gala 66 92 13 0-64
Empire 69 93.75 35 0-8
Jonagold 67 68 18 0-98
Golden Del. 70 90-6 23 1-1
Pink Lady 78 100 14 0-86
Red Del. 80 100 21 1
Fuji 69 94 14 1-3
Rome 80 93 10-4 1-5
Table A3

Results of defect detection based on 950 nm images. Number of
defects identified

Variety Defect detection, %% False
positives, %

Dark Bruises Faint

marks marks
Gala 65 100 19 0-47
Empire 43 97 21 0-69
Jonagold 100 100 18 0-53
Golden Del. 69 97 10 1-1
Pink Lady 78 100 19 0-8
Red Del. 67 92 17 0-62
Fuji * 85 9 1.9
Rome 70 93 12 1-8
* No data.

Table A4

Results of defect detection based on 740 nm images. Defective
area identified

Variety Defect detection, % False
positives, %
Dark Bruises Faint
marks marks
Gala 64 64 6-4 0-64
Empire 77 68 52 0-8
Jonagold 70 33 20 0-98
Golden Del. 72 57 12-6 1-1
Pink Lady 66 67 15 0-86
Red Del. 77 74 15 1
Fuji 60 64 6-1 1-3
Rome 84 79 10-4 1-5




APPLE SURFACE DEFECT IDENTIFICATION

Results of defect detection based on 950 nm images. Defective area identified

Table AS
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Variety Defect detection, %% False positives, %
Dark marks Bruises Faint marks

Gala 54 84 26 0-47
Empire 40 90 11 0-69
Jonagold 0-5 84 0-3 0-53
Golden Del. 54 84 16 11

Pink Lady 52-5 87 36 0-8

Red Del. 71 86 33 0-62

Fuji * 58 * 19

Rome 71-6 69 1 1-8

* No data.
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